Related Links


University of Edinburgh heralds solar energy as a future source of wireless communication

According to the University of Edinburgh, a new form of wireless data communication using solar energy to create the power for Li-Fi technology could have significant and profound commercial and social benefits for millions of people across the world.

Edinburgh Research & Innovation (ERI), the commercialisation arm of the University of Edinburgh, claims this will have impact particularly for populations in rural communities and the developing world that do not have existing infrastructures for electric power, the internet and Wi-Fi access.

Light is used to transmit data, whilst the solar panel receives high speed data, which, effectively, gives the solar panel the means to provide energy for Li-Fi technology and act as a broadband receiver for Li-Fi.

The technology was developed by a research team at the University of Edinburgh’s Li-Fi R&D Centre, led by Professor Harald Haas. At this year’s TED Global 2015 event in London, Professor Haas demonstrated how Li-Fi can be used with solar cells to receive data, thus bringing into sharp focus how the likes of solar panels on houses or other objects such as smart watches, can absorb power and receive data at the same time. With the help of this technology, ERI believes smart watches could be powered and connected to the internet through light.

The prototype used in the demonstration was built in a collaborative partnership between the University of Edinburgh’s Li-Fi R&D Centre and pureLiFi Ltd, a University of Edinburgh spin-out company, recognized for using the visible light spectrum instead of radio frequencies to enable wireless data communication.

ERI is now looking for industrial partners to work with the University’s Li-Fi R&D Centre to develop the technology for commercial use.

The research carried out by the University of Edinburgh Li-Fi R&D Centre focuses on the integration of power gathering and data-reception at solar panels and turning them into communication devices. In effect, solar cells within the panel become communications nodes that receive high bandwidth data whilst also providing electrical power for the nodes’ operation.

Tom Higgison, ERI’s IP Projects Manager comments, "This University of Edinburgh technology combines light based data communications, or ‘Li-Fi’, with energy harvesting, to create an exciting set of applications not previously anticipated including in rural broadband access, smart city networks, and the internet of things. The wider opportunity is to transform global communications by speeding up the process of bringing internet and other data communication functionality to remote and poorer regions in a way not previously thought achievable due to lack of infrastructure and investment.”

During his talk, Professor Haas stressed that over four billion people worldwide do not have access to the internet and with little energy infrastructure in developing countries to support traditional broadband and Wi-Fi, solar energy can bring transformational change to this situation. 

Share this article

More services


This article is featured in:
Solar electricity